Physicists prefer to use hermitian operators, while mathematicians are not biased towards hermitian operators A lot of answers/posts stated that the statement does matter) what i mean is What is the fundamental group of the special orthogonal group $so (n)$, $n>2$
Teen who records his mom's OnlyFans content admits to finding a
The answer usually given is
To gain full voting privileges,
I have known the data of $\\pi_m(so(n))$ from this table The generators of so(n) s o (n) are pure imaginary antisymmetric n×n n × n matrices How can this fact be used to show that the dimension of so(n) s o (n) is n(n−1) 2 n (n 1) 2 I know that an antisymmetric matrix has n(n−1) 2 n (n 1) 2 degrees of freedom, but i can't take this idea any further in the demonstration of the proof
You'll need to complete a few actions and gain 15 reputation points before being able to upvote Upvoting indicates when questions and answers are useful What's reputation and how do i get it Instead, you can save this post to reference later.
I have a potentially simple question here, about the tangent space of the lie group so (n), the group of orthogonal $n\times n$ real matrices (i'm sure this can be.
U (n) and so (n) are quite important groups in physics I thought i would find this with an easy google search What is the lie algebra and lie bracket of the two groups? In case this is the correct solution
Why does the probability change when the father specifies the birthday of a son